RM新时代投资官方网站|首入球时间

重慶污水處理設備_廢氣處理設備_純凈水設備-山藝環(huán)保

一體化環(huán)保工程方案提供商15年專(zhuān)注設計、建設、管理、運營(yíng)于一體的綜合性環(huán)保企業(yè)

服務(wù)熱線(xiàn)023-68936966

24小時(shí)服務(wù)熱線(xiàn)13193096663

海水鉆井液廢液處理技術(shù)

2022/5/9 9:58:23 / 作者:污水處理設備公司廠(chǎng)家 / 來(lái)源:山藝環(huán)保

隨著(zhù)石油工業(yè)的快速發(fā)展,鉆井液的種類(lèi)不斷增加,添加劑日益增多,使其組成極為復雜,其中有些成分對人身和環(huán)境均具有毒害作用。渤海作為特殊的海域,隨著(zhù)環(huán)保形勢的日益嚴峻,未來(lái)三年將逐步落實(shí)零排放政策,嚴格執行陸地關(guān)于三廢國家標準及地方標準,因此,現場(chǎng)產(chǎn)生的鉆井液廢液必須通過(guò)船只運送至陸上進(jìn)行處理,大量鉆井液廢液的運輸成本極高,減量化處理將是海上鉆井液廢液處理的發(fā)展趨勢,極需解決海水鉆井液廢液固液分離及再利用難題。本文對海水基鉆井液廢液進(jìn)行固液分離,并分析了其固液分離機理,通過(guò)對海水鉆井液廢液水相進(jìn)行再回收利用,大幅減少鉆井廢棄物回收量,有效降低鉆井液廢棄物回收成本,滿(mǎn)足環(huán)保要求和生產(chǎn)作業(yè)需求。

  1、實(shí)驗材料及儀器

  混凝劑PF-PCF,室內自制,陽(yáng)離子雙子型聚丙烯酰胺(分子量300萬(wàn),陽(yáng)離子度15%);混凝劑聚合氯化鋁鐵、氯化鐵、聚合氯化鋁;部分水解聚丙烯酰胺、黃原膠、海水、NaOH、NaOH、NaCl、KCl、重晶石等。

  離心機、攪拌器、分析天平、pH計、Materials Studio2017R2 軟件。

  2、結果與討論

  2.1 海水鉆井液廢液的配制

  渤海油田應用的KCl/PHPA海水鉆井液體系,其基本配比見(jiàn)表1。

1.jpg

  由表1可見(jiàn),KCl/PHPA海水鉆井液體系中主要處理劑為部分水解聚丙烯酰胺、低黏聚陰離子纖維素、黃原膠、淀粉和膨潤土,部分水解聚丙烯酰胺是一種陰離子型聚合物,黃原膠、淀粉是一種非離子型聚合物,對于上述海水鉆井液體系的絮凝,選用室內合成的混凝劑PF-PCF與其它三種混凝劑聚合氯化鋁鐵、氯化鐵、聚合氯化鋁進(jìn)行對比。

  2.2 不同混凝劑的絮凝效果

  取四只燒杯,各取60mL模擬海水鉆井液,加入相同濃度、不同類(lèi)型的混凝劑進(jìn)行絮凝分離,混凝劑的種類(lèi)為PF-PCF、聚合氯化鋁鐵、氯化鐵、聚合氯化鋁4種,基本配方為:60mL模擬海水鉆井液+4mL濃度為100000mg/L的混凝劑溶液,模擬海水鉆井液廢液中加入混凝劑后,攪勻,體系中混凝劑的濃度為6250mg/L。將四組實(shí)驗離心,如圖1所示。

2.jpg

  由圖1可見(jiàn),當混凝劑濃度相同時(shí),PF-PCF可以實(shí)現模擬海水鉆井液廢液固液完全分離,在同等濃度下其余三種混凝劑的絮凝效果并不理想。取出離心得到的上清液(見(jiàn)圖2),分別測定上清液的體積、pH值,計算脫水率,結果見(jiàn)表2。脫水率=(上清液體積-加入溶液體積)/處理的鉆井液廢液體積。

3.jpg

4.jpg

  由表2可見(jiàn),直接用混凝劑進(jìn)行絮凝的模擬海水鉆井液廢液,PF-PCF在濃度為6250mg/L有良好的絮凝分離效果,在同等濃度下,其余混凝劑可以絮凝沉降鉆井液廢液中的部分固體,但并不能使固液完全分離。

  2.3 混凝劑PF-PCF使用濃度的測定

  取4只燒杯,各取60mL模擬海水鉆井液廢液,分別加入相同體積、不同濃度的PF-PCF溶液,具體配方如下:

  60mL鉆井液廢液+4mL濃度分別為60000、80000、100000、120000mg/L的PF-PCF溶液,攪勻。

  此時(shí)體系1-4號中混凝劑PF-PCF的濃度分別為3750、5000、6250、7500mg/L。將四組實(shí)驗離心,如圖3所示。

5.jpg

  由圖3可見(jiàn),當PF-PCF的濃度達到6250mg/L時(shí),才能取得較好的絮凝效果。隨著(zhù)濃度升高,絮凝分離得到的上清液更加清澈。取出離心得到的上清液,測定各項數據,如表3所示。

6.jpg

  由表3可見(jiàn),當體系中PF-PCF濃度達到6250mg/L時(shí),就可以實(shí)現固液分離,且隨著(zhù)濃度升高,固液分離的脫水率也有一定程度的升高。選擇使用PF-PCF濃度為7500mg/L,絮凝分離后上清液的pH=6.94,脫水率為55.7%,脫出水較清。

  2.4 海水鉆井液廢液脫穩機理

  模擬使用Materials Studio2017R2 軟件,通過(guò)GeometryOptimization工具對部分水解聚丙烯酰胺單分子模型進(jìn)行結構優(yōu)化,選擇Compass(Version2.8)力場(chǎng),靜電作用和范德華作用分別采用Ewald和Atom-based求和方法,使用SmartMinimization算法使分子達到能量最小化模型。部分水解聚丙烯酰胺單分子模型如圖4所示。

7.jpg

  采用Forcite模塊中的Dynamics工具對優(yōu)化好的圖層進(jìn)行計算,選擇Ensemble為NVT(正則系綜),Temperature:278K,TimeStep:1fs,TotalSimulationTime:500ps,NumberofSteps:5000,在Compass力場(chǎng)下進(jìn)行分子動(dòng)力學(xué)模擬,對每個(gè)模型重復多次計算,使每組數據的偏差在5%之內。

  2個(gè)部分水解聚丙烯酰胺分子與100個(gè)水分子進(jìn)行結合,其構象模型如圖5所示。

8.jpg

  使用Materials Studio2017R2 軟件對上述分子構象中的能量進(jìn)行模擬,數據如表4所示。

9.jpg

  兩個(gè)部分水解聚丙烯酰胺分子、一個(gè)混凝劑分子與水分子以2∶1∶100構建模型如圖6所示。

10.jpg

  使用Materials Studio2017R2 軟件對上述分子構象中的能量進(jìn)行模擬,數據如表5所示。

11.jpg

  對比表4、表5中能量的變化,在加入混凝劑前,部分水解聚丙烯酰胺與水分子體系的總能量為-937.733kcal/mol,加入混凝劑后,此混合體系的總能量為-390.518kcal/mol,體系中能量的絕對值下降了547.215kcal/mol,下降率為58.4%。體系能量的下降導致兩個(gè)部分水解聚丙烯酰胺分子相互靠近時(shí),排斥能減小,體系不穩定,發(fā)生絮凝。同樣可知,當部分水解聚丙烯酰胺吸附混凝劑時(shí),由于部分水解聚丙烯酰胺帶負電荷,而混凝劑帶正電荷,當二者吸附后,部分正電荷與負電荷發(fā)生電性中和,使部分水解聚丙烯酰胺的負電荷減少,ξ電位降低,導致兩個(gè)部分水解聚丙烯酰胺分子之間的斥力減小。

  綜合兩個(gè)部分水解聚丙烯酰胺分子間能量與ξ電位的變化,都呈現出降低的趨勢,因此兩個(gè)部分水解聚丙烯酰胺分子相互靠近,易于聚集,海水鉆井液廢液的穩定性下降,產(chǎn)生絮凝。

  3、結論

  (1)通過(guò)對比實(shí)驗,對于海水鉆井液廢液,優(yōu)選的混凝劑為PF-PCF,濃度為7500mg/L,絮凝分離后上清液的pH=6.94,脫水率為55.7%,脫出水較清。

  (2)Materials Studio2017R2 軟件,分析了加入混凝劑前后,海水鉆井液廢液體系的能量絕對值由937.733kcal/mol,降至390.518kcal/mol,下降率為58.4%,有利于海水鉆井液廢液的固液分離。


 

熱門(mén)文章

023-68936966

服務(wù)熱線(xiàn):023-68936966

聯(lián)系電話(huà):13193096663

公司傳真:023-62959615

公司郵箱:351513460@qq.com

公司地址:重慶市南岸茶園新區同景國際S1組團1棟6樓

RM新时代投资官方网站|首入球时间